当前位置:首页 > 沾锡机资讯 > 沾锡机资讯 > 电子线材加工厂浅析大功率扬声器

电子线材加工厂浅析大功率扬声器

责任编辑:全动联自动沾锡机厂家  发布时间:2016-01-30
分享到:

  众所周知,什么是扬声器?那么大功率扬声器你们了解了多少呢?对于大功率扬声器的修理经验,更换以及修复方法,今天电子线材加工厂就给你们一一介绍吧:


  一、大功率扬声器修理经验两则


  1)以前维修喇叭都是先将烧坏的音圈用刀具撬下来,将T形磁铁缝隙里的碎屑清理干净,按照常规的方法安装上好的音圈,定位、接线、快速涂上A、B胶,经数小时晾干后,粘牢防尘盖,待干后交付使用。这种流程修好的喇叭,特别是娱乐场所用的大功率喇叭,多则半年。少的就几十天便会拿回返修,大多数都是音圈松动,拉断连线,需重新换音圈才能修复。


  后在为一用户维修一只“JBL”18英寸低音喇叭时,在装好音圈后,发现涂胶水以上的部分还剩下相当长的一部分铝皮.于是灵机一动,用剪刀把铝皮剪成条状,然后将剪成的长条往纸盆方向弯折到底,然后再涂一层A、B胶,晾数小时后,再粘牢防尘盖。用这种方法修好的喇叭经久耐用,有的使用期甚至超过新买的喇叭。


  2)一只意大利产RCF300型8Ω/300W号筒式高音喇叭的一根引线从音圈根部折断,将折断处焊接好后,使用正常。但几天后故障重现,拆下检查发现断线处的焊点因大功率放音时产生的高温已熔化开路。后经几次焊接均烧开路。若因此而更换一个音圈,费用太高(要1500元一只),且不易购到,手工绕制的性能又达不到原音圈的水平。最后经实验在高音喇叭引线上串接一只6.8Ω/10W的水泥电阻,解决了使用中温度高烧开焊点的问题,而对其功率及音质基本无影响。


  二、更换扬声器泡沫边的方法


  换泡沫边时,要视泡沫边的直径、大小、宽度、厚度、软硬度和泡沫颗粒密度的大小而选择,因为泡沫边是用多层发泡塑料(密度很小)在特定的温度下压制而成的。在更换前,用医用手术刀沿音圈边缘的纸盆360°划断(注意不要划伤弹簧板和音圈编织引出线),再用聚脂薄膜或塑料胶片插入音圈与中心导磁铁柱间隙之中(越紧越好,以防擦圈)。

  此时音圈绕线的四分之一应上浮露出高于上导磁铁板,然后用上海产的康达牌AB黏合剂和好彩牌磁漆以0 : 0.5 : 0.25比例(即A黏合剂1,B黏合剂0.5,磁漆0.25)调匀后涂于被划断的纸盆处,将新换的纸盆粘好15分钟后完全可以放音。注意要合理调整音圈在中心导磁铁柱及弹簧板的位置。使弹簧板充分自如发挥弹性作用,使音圈处于磁场的最佳位置,扬声器才会重放出优美动听的声音。


  三、 快速修复大功率扬声器的方法


  由于专业音箱都是在舞厅或室外舞台中用大功率功放推动放音使用,所以极容易产生过负荷而烧毁音圈,另外,扬声器在大音量低音的强劲震动下也容易把音圈中的线圈震散碰壁而烧坏。因专业用扬声器价格高(如15英寸的380多元),与购新扬声器相比较,维修使用比较合算。

  常规修法是用香蕉水(别称天那水)浸湿纸盆,以溶解粘接的胶水后再把纸盆拆卸下来,因香蕉水很难溶解粘接扬声器的胶水,有时只好强行用刀片剔,极容易把纸盆弄破弄皱,费工费时不说,修理质量也很准确保。本人在为舞厅修理扬声器的过程中,总结了一套快捷的拆修扬声器法,现介绍给大家。


  1、准备工具

  自制一把斜口刀,用断的钢锯片在砂轮上磨出图1中的刃口状,将有锯齿的一面在砂轮上把齿磨平,然后在油石上把刀口磨锋利,最后用细磨刃口石磨,使之成为一把锋利的钢锯刀片。


  2、拆防尘罩


  扬声器结构,在防尘罩的粘接边沿上用一水彩笔画一复原时的定位记号,用钢锯刀在防尘罩的边沿处切一小口,然后一边转动扬声器一边切割防尘罩,直到转动一周后把防尘罩彻底切断,把防尘罩取下。

  3、拆音圈

  把纸盆上与音圈相连的两根接线焊下,因音圈引出线是用专用黑色油漆粘在纸盆上的,可用烙铁一边加热黑色油漆,一边拉音圈引线,直到引线与音圈垂直。用水彩笔在音圈上和纸盆上画一复原时的定位记号,然后用自制的钢锯刀在音圈与纸盆和弹性支架的粘接处作圆周切割,切割的圆周直径比音圈的直径需大4mm。

  纸盆割断后,在纸盆的断裂处,按纸盆的断裂轨迹作圆圈切割弹性支架,使纸盆与弹性支架和音圈分离,这时只要把音圈轻轻的一提,即可把音圈完整无损地取出。

  4、重绕音圈

  把烧毁的音圈漆包线线径、匝数记住.找一个装花露水的玻璃瓶(φ48mm×120mm)做音圈骨架芯。再用白纸裁成80mm宽的纸条,卷在玻璃瓶上,使之与音圈的内径相同,然后把烧毁的音圈慢慢套上去,这时就可以把烧坏的线圈拆掉,并清理干净骨架上的胶水残杂,注意不要把切割后枯在音圈上的一小圈纸盆和弹性支架弄掉。

  用相同线径的漆包线,在原骨架绕组的痕迹上重新绕制,每绕8至10圈,点502胶粘住线圈以防松散,绕完后把音圈引出线理平整,用502胶粘住引出线,两分钟后即可用无需烘干的1302K快干型绝缘漆在线圈上均匀地涂一圈,过4小时后再涂一圈即可,待绝缘漆干燥后,把卷在玻璃瓶上的纸条抽出来,就可把重绕的音圈毫不费力地取出。

  5、装音圈

  把粘在音圈上的一小圈纸盆与弹性支架和扬声器上的纸盆理平整,将音圈有记号的地方与纸盆对齐,把音圈缓慢地放人扬声器的磁铁芯中,但不要全部放下,使音圈和纸盆的接合处高出4mm~5m。

  找一张广告用的铜片纸裁成4条宽7mm长160mm的纸条,每条对折后按90°的角,分别把4张纸条插入音圈与磁铁芯之间,使之垂直定位,再把音圈缓慢地挤压下去,使音圈与纸盆的记号重合,并仔细调整音圈与纸盆的结合处,再观察弹性支架是否有下凹的现象,如有应挑起,使之成水平状,并与粘在音圈上的一小圈弹性支架重合,准确重合定位后用1302K型绝缘漆涂在音圈与纸盆的周围,涂完后在纸盆的下方小心地涂弹性支架,20分钟后再涂一次绝缘漆,使音圈与纸盆和弹性支架的结合处漆厚度不小于1mm,若小于1mm,可多涂几次。  待漆干后,抽去定位用的纸条,把音圈上的2根引线焊在纸盆上的焊接线上,并在引线上覆盖绝缘漆即可。


  6、装防尘罩

待引出线上的绝缘漆干燥后,把防尘罩上的记号与纸盆上的记号对准装上,用502胶粘住,再用绝缘漆在防尘罩上的结合处涂一圈,干燥后一个扬声器即修好了。


用绝缘漆作粘接剂使用既方便,粘接强度也高,再加上无色透明,粘接痕迹也小,有兴趣的读者可试试看!


  三、扬声器引出线的正确焊接方法


  1、引出线应高出音圈骨架上端边缘1至2毫米并向下弯曲(注意弯曲度不要过小),焊接到纸盆下部的编织线焊点上,用粘合剂将引出线粘牢;


  2、在粘接好音圈骨架和纸盆后,再将引出线焊接到纸盆下部的编织焊点上,再用立得宝之类的较软性的粘合剂将引出线和纸盆粘合,使引出线与纸盆粘接牢固;


  3、用较细的铜编织线和音圈引出线焊接在一起,从骨架的上端往下弯曲焊接到纸盆下端的焊点上,涂上较软的粘合剂。


以上关于扬声器的三大点知识,电子线材加工厂就讲述到这里了,您了解了吗?

上一篇:电脑裁线机会出现什么问题,应如何解决?

下一篇:没有了

  • 主页
  • 鸡粪脱水机
  • 油烟除味器
  • 内燃凿岩机
  • 主页 > 油烟除味器 >

    金属材料元析仪器的技术原理

      发布时间:2018-03-20 18:25

      金属材料中的碳、硫、硅、锰、磷、镍、铬、铜等元素对其性能和品质有着重要影响,智能高速的科学仪器可以更好的满足冶金、机械、化工等行业在炉前、成品、来料化验等方面对材料多元素分析。

      金属材料中的碳、硫、硅、锰、磷、镍、铬、铜等元素对其性能和品质有着重要影响,智能高速的科学仪器可以更好的满足冶金、机械、化工等行业在炉前、成品、来料化验等方面对材料多元素分析。

      本项目是光电比色仪的升级换代产品。比色分析仪器的检测原理是含有不同元素成分的溶液,其化合物为不同颜色,对不同波长的光,具有选择性吸收谱图。因此,当一个固定波长的光通过含有某种元素的溶液(有色溶液)时,会产生光吸收,此吸收规律可由朗伯-比尔定律得出:

      单色光经过有色溶液时,透过溶液的光强度不仅与溶液的浓度和厚度有关,而且还与溶液本身对光的吸收性能有关:

      其中 A 为消光值,是透射光强 I 和发射光强 I0 的比值的对数(反射光强度忽略不计)即 A= lg(I0/I);

      K 为某元素溶液的消光(吸收)系数,一种元素溶液对于一定波长(单色光)的入射光的 K 值具有一定数值。若溶液的浓度以 mol/l 表示,溶液厚度以 cm 表示,则此时的 K 值称为摩尔消光系数;

      若先配制一已知浓度的标准溶液,并用同样方法处理标准溶液与被测溶液,使其成色后在同样的实验条件下用比色分析仪器分别测定它们的吸光度,则在标准溶液中As=KsCsLs,在待测溶液中Ax=KxCxLx,如测定时选用相同厚度的比色皿使L相等,并使用同一波长的单色光和相同的环境温度,则k也相等,即有 As/Ax=Cs/Cx 或 Cx=(Ax/As)Cs只要能测出吸光度值就能测出被测溶液的浓度,这就是比色分析仪器检测的基本原理。

      由于不同元素及不同的检测分析方法,需要不同的特定波长(如氧化亚锡还原硫氰酸盐光度法测定钢中钼需用520nm;草酸硫酸亚铁硅钼蓝光度法测定钢中低硅需用700nm),而传统元素分析仪的光源波长均为固定预设不可调,无法适应冶金、铸造、机械、化工等各行业采用新材料检测多种元素的需要。本项目国内首创采用采用波长可调光学系统,实现测量波长连续可调及分析元件采用弯道式比色杯等创新技术,以及回归曲线计算采用多字节浮点对数运算,参数调整和跟踪采用电子自动调整设计,可以实现光源波长的连续可调,而且波长精度明显提高(由过去的20nm以上提高到现在的2nm以下),从而满足了各行业用户检测不同材料的多种元素含量的需要。